
Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/16 © Ren-Song Tsay, NTHU, Taiwan 61

5.7

Binary
Search Trees

Binary Search Tree Definition

A binary search tree (BST) is a binary

tree which satisfies the following properties:

 Every element has a key and no two

elements have the same key.

 The keys (if any) in the left subtree are

smaller than the key in the root

 The keys (if any) in the right subtree are

larger than the key in the root

 The left and right subtrees are also BST

62

5.7

BST: Examples

4239

40

30

1012

15

20

22

25 5

2

NO! YES!

Inorder traversal?

Inorder traversal of a BST will result in a

sorted list.

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 2

BST: Operations

 Search an element in a BST

 Search for the rth smallest element in a

BST

 Insert an element into a BST

 Delete max/min from a BST

 Delete an arbitrary element from a

BST

64

BST: Search an Element

1. Search for key 7

2. Start from root

3. Compare the key with root

◦ If ‘<’ search the left subtree

◦ If ‘>’ search the right subtree

4. Repeat step 3 until the key is found

or a leaf is visited

65

60

5

2 7

BST: Recursive Search Codes

66

template < class K, class E >

pair<K,E>* BST<K,E>::Get(const K& k)

{ // Search the BST for a pair with key k

// If this pair is found, return a pointer to this
// pair, otherwise return 0

return Get(root, k);

}

template < class K, class E >

pair<K,E>* BST<K,E>::Get(TreeNode<pair<K,E>>* p, const K& k)

{

if(!p) return 0;

if(k < p->data.key) return Get(p->leftChild, k);

if(k > p->data.key) return Get(p->rightChild, k);

return &p->data;

}

p->data.key = key

p->data.element = element

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 3

TreeNode Review
template <class T > class Tree; // Forward declaration

template < class T >
Class TreeNode {
friend class Tree <T>;
private:

T data;
TreeNode<T>* leftChild;
TreeNode<T>* rightChild;

};

Template < class K, class E >
Class pair {

Private:

K key;
E element;

}

BST: Iterative Search Codes

68

template < class K, class E >

pair<K,E>* BST<K,E>::Get(const K& k)

{

TreeNode < pair<K, E> > *currentNode = root;

while (currentNode) {

if (k < currentNode->data.key)

currentNode = currentNode->leftChild;

else if (k > currentNode->data.key)

currentNode = currentNode->rightChild;

else return & currentNode->data;

}

return NULL; // no match found

}

BST: Search an Element by Rank

 Definition of rank:

◦ A rank of a node is its position in inorder

traversal

40

30

5

2

Inorder traversal : 2 →5 → 30 → 40

Rank : 1 2 3 4

Therefore, the 𝑟𝑡ℎ smallest

element is the node with rank 𝑟

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 4

BST: Search by Rank, Codes

 For each node, we store an additional information

“leftSize” which is 1 + (# of nodes in the left subtree)

70

template < class K, class E >

pair<K,E>* BST<K,E>::RankGet(int r)

{ // Search BST for the rth smallest pair

TreeNode<pair<K,E>>* currentNode = root;

while(currentNode){

if(r < currentNode->leftSize)

currentNode = currentNode->leftChild;

else if(r > currentNode->leftSize) {

r -= currentNode->leftSize;

currentNode = currentNode->rigthChild;

}

else return ¤tNode->data;

}

return 0;

}

BST: Insert

1. To insert an element with key 80

2. First we search for the existence of

the element

3. If the search is unsuccessful, then the

element is inserted at the point the

search terminates

71

40

80

30

5

2

BST: Insert Codes

72

template < class K, class E >

void BST<K,E>::Insert(const pair<K,E>& thePair)

{ // Search for key “thePair.key”, pp is the parent of p

TreeNode<pair<K,E>>* p = root, *pp=0;

while(p){

pp = p;

if(thePair.key < p->data.key)

p = p->leftChild;

else if(thePair.key > p->data.key)

p = p->rightChild;

else // Duplicate, update the value of element

{ p->data.element = thePair.element; return; }

}

// Perform the insertion

p = new pair<K,E>(thePair);

if(root) // tree is not empty

if(thePair.key < pp->data.key) pp->leftChild = p;

else pp->rightChild = p;

else root = p;

}

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 5

BST: Min or Max Element

• Min (Max) element is at the leftmost
(rightmost) of the tree

• Min or max are not always terminal
nodes

• Min or max has at most one child

73

4

5

2

1 3

4

7

5

2

1

3 7
Min

Max

6

Min

Max

BST: Delete

 To delete an element with key k

 Search for the key k
 If the search is unsuccessful, no need

to do anything.
 If the search is successful, we have to

deal three scenarios
1) The element is a leaf node

2) The element is a non-leaf node with
one child

3) The element is a non-leaf node with
two children

74

BST: Delete

 Scenario 1: the element is a leaf node

 The child field of parent node is set to
NULL

 Dispose the node

75

80

30

5

2

40

35

1 3

To delete 35

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 6

BST: Delete

 Scenario 2: the element is a non-leaf
node with one child

 Simply change the pointer from the
parent node (i.e. node with key 30) to the
single-child node (i.e. node with key 2)

 Dispose the node

76

30

5

2 80

40

31

To delete 5

BST: Delete

 Scenario 2: the element is a non-leaf
node with one child

 Simply change the pointer from the
parent node (i.e. node with key 30) to the
single-child node (i.e. node with key 2)

 Dispose the node

77

To delete 5

30

2

80

40

1 3

BST: Delete

 Scenario 3: the element is a non-leaf
node with two children

 The deleted element is replaced by either
◦ the smallest element in right subtree or

◦ the largest element in left subtree

78

30

5

41

40

357

6 The smallest element

in right subtree

To delete 30

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 7

BST: Delete

 Scenario 3: the element is a non-leaf

node with two children

 Delete the node

◦ It is a leaf node → apply scenario 1!

79

35

5

41

40

357

6

To delete 30

BST: Delete

 Scenario 3: the element is a non-leaf

node with two children

 Delete the node

◦ It is a leaf node → apply scenario 1!

80

35

5

41

40

7

6

To delete 30

BST: Delete

 Scenario 3: the element is a non-leaf

node with two children

 The deleted element is replaced by either

◦ the smallest element in right subtree or

◦ the largest element in left subtree

81

30

5

41

40

357

6

The largest element in

left subtree

To delete 30

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 8

BST: Delete

 Scenario 3: the element is a non-leaf
node with two children

 Delete the node
◦ It is a non-leaf node with one child →

apply scenario 2!

82

7

5

41

40

357

6

To delete 30

BST: Delete

 Scenario 3: the element is a non-leaf
node with two children

 Delete the node
◦ It is a non-leaf node with one child →

apply scenario 2!

83

6

7

5

41

40

35

To delete 30

BST: Time Complexity

 Search, insertion, or deletion takes O(h)

 ℎ = Height of a BST

84

1

2

3

n

1,2,3,…

• Worst case ℎ = 𝑛

– Insert keys

• Best case ℎ = log 𝑛

– Insert keys : 4, 2, 6, 1, 3,

5, 7

4

2

1 3 7

6

5

Prof. Ren-Song Tsay September 21, 2018

Chapter 1 — Computer Abstractions and Technology 9

Self-Study Topics

 Write the pseudo code of BST

deletion

 Selection trees

 AVL trees (Ch. 10)

◦ Worst case height : 𝑶(𝐥𝐨𝐠 𝒏)

85

